jueves, 9 de mayo de 2013

dinamica:


Dinámica

La dinámica es la parte de la física (específicamente de la mecánica clásica) que describe la evolución en el tiempo de un sistema físico en relación con las causas que provocan los cambios de estado físico y/o estado de movimiento. El objetivo de la dinámica es describir los factores capaces de producir alteraciones de un sistema físico, cuantificarlos y plantear ecuaciones de movimiento o ecuaciones de evolución para dicho sistema de operación.
El estudio de la dinámica es prominente en los sistemas mecánicos (clásicos, relativistas o cuánticos), pero también en la termodinámica y electrodinámica. En este artículo se describen los aspectos principales de la dinámica en sistemas mecánicos, y se reserva para otros artículos el estudio de la dinámica en sistemas no mecánicos.
En otros ámbitos científicos, como la economía o la biología, también es común hablar de dinámica en un sentido similar al de la física, para referirse a las características de la evolución a lo largo del tiempo del estado de un determinado sistema.

Historia

Una de las primeras reflexiones sobre las causas de movimiento es la debida al filósofo griego Aristóteles. Aristóteles definió el movimiento, lo dinámico (το δυνατόν), como:
"La realización acto, de una capacidad o posibilidad de ser potencia, en tanto que se está actualizando"
Por otra parte, a diferencia del enfoque actual Aristóteles invierte el estudio de la cinemática y dinámica, estudiando primero las causas del movimiento y después el movimiento de los cuerpos. Este enfoque dificultó el avance en el conocimiento del fenómeno del movimiento hasta, en primera instancia, San Alberto Magno, que fue quien hizo notar esta dificultad, y en última instancia hasta Galileo Galilei e Isaac Newton. De hecho, Thomas Bradwardine, en 1328, presentó en su De proportionibus velocitatum in motibus una ley matemática que enlazaba la velocidad con la proporción entre motivos a fuerzas de resistencia; su trabajo influyó la dinámica medieval durante dos siglos, pero, por lo que se ha llamado un accidente matemático en la definición de «acrecentar», su trabajo se descartó y no se le dio reconocimiento histórico en su día.1

Cálculo en dinámica

A través de los conceptos de desplazamientovelocidad y aceleración es posible describir los movimientos de un cuerpo u objeto sin considerar cómo han sido producidos, disciplina que se conoce con el nombre de cinemática. Por el contrario, la dinámica es la parte de la mecánica que se ocupa del estudio del movimiento de los cuerpos sometidos a la acción de las fuerzas.

Leyes de conservación

Las leyes de conservación pueden formularse en términos de teoremas que establecen bajo qué condiciones concretas una determinada magnitud "se conserva" (es decir, permanece constante en valor a lo largo del tiempo a medida que el sistema se mueve o cambia con el tiempo). Además de la ley de conservación de la energía las otras leyes de conservación importante toman la forma de teoremas vectoriales. Estos teoremas son:
  1. El teorema de la cantidad de movimiento, que para un sistema de partículas puntuales requiere que las fuerzas de las partículas sólo dependan de la distancia entre ellas y estén dirigidas según la línea que las une. En mecánica de medios continuos y mecánica del sólido rígido pueden formularse teoremas vectoriales de conservación de cantidad de movimiento.
  2. El teorema del momento cinético, establece que bajo condiciones similares al anterior teorema vectorial la suma de momentos de fuerza respecto a un eje es igual a la variación temporal del momento angular.

[editar]Ecuaciones de movimiento

Existen varias formas de plantear ecuaciones de movimiento que permitan predecir la evolución en el tiempo de un sistema mecánico en función de las condiciones iniciales y las fuerzas actuantes. En mecánica clásica existen varias formulaciones posibles para plantear ecuaciones:
  • La mecánica newtoniana que recurre a escribir directamente ecuaciones diferenciales ordinarias de segundo orden en términos de fuerzas y en coordenadas cartesianas. Este sistema conduce a ecuaciones difícilmente integrables por medios elementales y sólo se usa en problemas extremadamente sencillos, normalmente usando sistemas de referencia inerciales.
  • La mecánica lagrangiana, este método usa también ecuaciones diferenciales ordinarias de segundo orden, aunque permite el uso de coordenadas totalmente generales, llamadascoordenadas generalizadas, que se adapten mejor a la geometría del problema planteado. Además las ecuaciones son válidas en cualquier sistema de referencia sea éste inercial o no. Además de obtener sistemas más fácilmente integrables el teorema de Noether y las transformaciones de coordenadas permiten encontrar integrales de movimiento, también llamadas leyes de conservación, más sencillamente que el enfoque newtoniano.
  • La mecánica hamiltoniana es similar a la anterior pero en él las ecuaciones de movimiento son ecuaciones diferenciales ordinarias son de primer orden. Además la gama de transformaciones de coordenadas admisibles es mucho más amplia que en mecánica lagrangiana, lo cual hace aún más fácil encontrar integrales de movimiento y cantidades conservadas.
  • El método de Hamilton-Jacobi es un método basado en la resolución de una ecuación diferencial en derivadas parciales mediante el método de separación de variables, que resulta el medio más sencillo cuando se conocen un conjunto adecuado de integrales de movimiento.
  • Conceptos relacionados con la dinámica

    [editar]Inercia

    La inercia es la propiedad de los cuerpos de no modificar su estado de reposo o movimiento uniforme, si sobre ellos no influyen otros cuerpos o si la acción de otros cuerpos se compensa.
    En física se dice que un sistema tiene más inercia cuando resulta más difícil lograr un cambio en el estado físico del mismo. Los dos usos más frecuentes en física son la inercia mecánica y lainercia térmica. La primera de ellas aparece en mecánica y es una medida de dificultad para cambiar el estado de movimiento o reposo de un cuerpo. La inercia mecánica depende de la cantidad de masa y del tensor de inercia del cuerpo. La inercia térmica mide la dificultad con la que un cuerpo cambia su temperatura al estar en contacto con otros cuerpos o ser calentado. La inercia térmica depende de la cantidad de masa y de la capacidad calorífica.
    Las llamadas fuerzas de inercia son fuerzas ficticias o aparentes para un observador en un sistema de referencia no-inercial.
    La masa inercial es una medida de la resistencia de una masa al cambio en velocidad en relación con un sistema de referencia inercial. En física clásica la masa inercial de partículas puntuales se define por medio de la siguiente ecuación, donde la partícula uno se toma como la unidad (m1 =1):
    m_i a_{i1} = m_1 a_{1i} \,
    donde mi es la masa inercial de la partícula i, y ai1 es la aceleración inicial de la partícula i, en la dirección de la partícula i hacia la partícula 1, en un volumen ocupado sólo por partículas i y 1, donde ambas partículas están inicialmente en reposo y a una distancia unidad. No hay fuerzas externas pero las partículas ejercen fuerzas entre si.

    [editar]Trabajo y energía

    El trabajo y la energía aparecen en la mecánica gracias a los teoremas energéticos. El principal, y de donde se derivan los demás teoremas, es el teorema de la energía cinética. Este teorema se puede enunciar en versión diferencial o en versión integral. En adelante se hará referencia al Teorema de la energía cinética como TEC.
    Gracias al TEC se puede establecer una relación entre la mecánica y las demás ciencias como, por ejemplo, la química y la electrotecnia, de dónde deriva su vital importancia.

    [editar]Fuerza y potencial

    La mecánica de partículas o medios continuos tiene formulaciones ligeramente diferentes en mecánica clásica, mecánica relativista y mecánica cuántica. En todas ellas las causas del cambio se representa mediante fuerzas o conceptos derivados como la energía potencial asociada al sistema de fuerzas. En las dos primeras se usa fundamentalmente el concepto de fuerza, mientras que en la mecánica cuántica es más frecuente plantear los problemas en términos de energía potencial. La fuerza resultante \scriptstyle \mathbf{F} sobre un sistema mecánico clásico se relaciona con la variación de la cantidad de movimiento \scriptstyle \mathbf{P} mediante la relación simple:
    \mathbf{F} = \frac{d\mathbf{P}}{dt}
    Cuando el sistema mecánico es además conservativo la energía potencial \scriptstyle V se relaciona con la energía cinética \scriptstyle K asociada al movimiento mediante la relación:
    \frac{dV}{dt} + \frac{dK}{dt} = 0
    En mecánica relativista las relaciones anteriores no son válidas si t se refiere a la componente temporal medida por un observador cualquiera, pero si t se interpreta como el tiempo propio del observador entonces sí son válidas. En mecánica clásica dado el carácter absoluto del tiempo no existe diferencia real entre el tiempo propio del observador y su coordenada temporal.






No hay comentarios:

Publicar un comentario